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Trajectory mechanism for particle deposition in annular flows
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1. Introduction

Two mechanisms for deposition have been proposed for gas–liquid annular flows. One of these involves a
consideration of the turbulent motion of the drops (Cousins and Hewitt, 1968; Hutchinson et al., 1971) caused
by fluid velocity fluctuations. Another, first described by Anderson and Russell (1970), involves a trajectory
mechanism whereby drops move in unidirectional motion from one wall to another in vertical conduits. Some
progress has been made in describing deposition by turbulence. However, the trajectory mechanism has
received less attention.

James et al. (1980) considered photographic studies of trajectories of drops with diameters larger than
250 lm and concluded that gas phase turbulence was having a moderate effect. Andreussi and Azzopardi
(1983) point out that, for air–water systems, a significant volume fraction of the drops have diameters less than
250 lm. They show that available data on deposition rates suggest that both turbulent and trajectory mech-
anisms need to be considered.

The present paper presents numerical simulations of the deposition process which provide quantitative
criteria for determining when a trajectory mechanism will dominate equations for the rate of deposition at
very low concentrations. Analyses of the trajectory mechanism, presented by Anderson and Russell (1970)
and by Chang (1973), have assumed that the velocity of depositing particles is the same as the velocity with
which they are ejected from the wall film into the gas flow. However, this can be in error because there is a
transition region in which particles could slow down while traversing the field, due to fluid resistance and par-
ticle turbulence. This effect is quantified in the calculations.
2. Approach

The simplified model of annular flow described in previous papers from this laboratory (Mito and
Hanratty, 2003, 2004a,b, 2005, 2006) is used. A vertical two-dimensional channel, having a width of 2H, is
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considered. Cartesian coordinates x1, x2 and x3 are assigned to the streamwise, wall-normal and spanwise
directions. The walls are located at x2 = 0 and x2 = 2H and are represented as being arrays of particle sources
which inject spherical solid particles into the field with specified velocity components in the streamwise and
wall-normal directions, V 0þ

1 and V 0þ
2 . The + superscript indicates that the terms have been made dimensionless

using the wall parameters, v* and m/v*, where v* is the friction velocity and m is the kinematic viscosity. Velocity
V 0þ

2 was varied and V 0þ
1 was set equal to 15, the fluid velocity at the edge of the viscous wall layer. The wall

sources are assumed to be distributed uniformly and continuously on the walls at all times. Then the concen-
tration field is calculated by using a Lagrangian method, which pictures the field as resulting from instanta-
neous wall sources that propelled particles into the field at different previous times (Mito and Hanratty, 2003).
(Periodicities are not used in the x1 and x3 directions in the calculation of the concentration field.) Particles
were removed from the field when they struck a wall. Results are presented for a fully-developed condition
where the rate of injection equals the rate of deposition.

The suspension is assumed to be dilute enough to ignore collisions and the feedback effect on the fluid
turbulence. The theoretical problem is to describe the behavior of a wall source. The change of the location
of a particle is related to the velocity Vi by
dxþi
dtþ
¼ V þi ð1Þ
and the change of the velocity is described by the momentum equation
dV þi
dtþ
¼ � 3qf CD

4dþp qp

jVþ �UþjðV þi � Uþi Þ þ gþi ; ð2Þ
where dp is the particle diameter, qp is the density of the particle, qf is the density of the gas, gi is a component
of the acceleration of gravity and CD is the drag coefficient given by
CD ¼
24

Rep

ð1þ 0:15Re0:687
p Þ: ð3Þ
The dimensionless inertial time constant is defined as
sþp ¼
4dþp ðqp=qfÞ

3CDjVþ �Uþj : ð4Þ
Thus Eq. (2) can be rewritten as
dV þi
dtþ
¼ � V þi � Uþi

sþp
; ð5Þ
where effects of gi are ignored. For a Stokes law resistance
sþp ¼
dþ2

p ðqp=qfÞ
18

: ð6Þ
In order to solve Eq. (2), it is necessary to specify the fluid velocity, Ui, seen by the particles. This is rep-
resented by a stochastic model that uses a modified Langevin equation (Mito and Hanratty, 2002).

The effects of particle inertia on the behavior of the system are represented by a volume-averaged time
constant
sþpB ¼
1

2HCB

Z 2H

0

�sþp ðx2ÞCðx2Þdx2; ð7Þ
where CB is the bulk concentration defined as
CB ¼
1

2H

Z 2H

0

Cðx2Þdx2: ð8Þ
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The rates of injection per unit area at the two walls are RA1 and RA2. For a vertical system RA1 =
RA2 = RA. For fully-developed conditions the rate of injection equals the rate of deposition so a deposition
coefficient can be defined as
Fig. 1
Res =
kþDB ¼
RA

CBv�
: ð9Þ
3. Results

The deposition coefficient made dimensionless with v*, kþDB, is plotted against the particle time constant in
Fig. 1 for Res = v*H/m = 590. The calculations were done for three injection velocities, V 0þ

2 ¼ 0:5; 1:0; 2:0. The
particle diameter was kept constant, dþp ¼ 0:368.

For small inertial time constants deposition is controlled by particle turbulence, caused by fluid velocity
fluctuations. The particles disengage from the turbulence and glide to the wall by ‘‘free-flight.’’ As sþpB increases
the ‘‘free-flight’’ starts at a larger distance from the wall, so the particles have a larger velocity component in a
direction normal to the wall because the fluid turbulence is larger. Thus kþDB and V þd increase with sþpB at small
sþpB.

At large enough inertial time constants the particles start their ‘‘free-flight’’ where the root-mean-square
of the x2-component turbulent velocity, r+, is relatively constant. This lead to the suggestion by Hay et al.
(1996), Hanratty et al. (2000) and Pan and Hanratty (2002) that, for this situation, kþDB ffi rþp =2p at the edge
of the viscous wall layer, where rþp is the dimensionless root-mean-square of the particle turbulence. This
relation is plotted as a solid curve in Fig. 1. It is noted that kþDB roughly follows this curve for a range
of sþpB.

Since particles injected from the wall become engaged with fluid turbulence, the calculations for different
V 0þ

2 are roughly the same at small and moderate sþpB. However, at very large sþpB, the inertia of the injected
particles is large enough that the influence of the injection velocity is dominant. This is accompanied by a
sharp increase in kþDB and an eventual leveling out to a constant, which increases with increasing V 0þ

2 .
Fig. 2 plots V þd , the average velocity with which particles strike the wall. It is noted that the plateaus in

Fig. 1 correspond to situations in which the particles arrive at the wall at the same velocity with which they
enter the field. This creates the picture that particles move from one wall to another with the same velocity
with which they enter the field.

The calculations presented in Figs. 1 and 2 kept dþp constant while varying sþpB. This meant that qp/qf was
varying. In order to check whether the changes in kþDB were influenced by changes in the density ratio,
calculations were also done for a constant qp/qf; that is, dþp varied along with sþpB. The results are presented
in Fig. 3. It is noted that the calculations with a constant qp/qf are quite close to what is obtained keeping
dþp constant.
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Fig. 2. Effect of the dimensionless inertial time constant, sþpB, on the dimensionless mean velocity of particles striking the wall, V þd , for
dþp ¼ 0:368 and Res = 590.
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Fig. 3. Effect of the dimensionless inertial time constant, sþpB, on the dimensionless deposition coefficient, kþDB, for qp/qf = 1000 and
Res = 590.
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The time it would take a particle with a velocity V 0
2 to move from wall to wall is 2H=V 0

2 if fluid drag is
ignored. Thus, a scaling which uses V 0

2 and 2H as the characteristic velocity and length scales would appear
to be more appropriate than v* and m/v* to correlate calculations of the deposition coefficient at large sþpB.

This idea is tested in Fig. 4 where calculations are presented for three Reynolds numbers and three injection
velocities. It is noted that all of the data fall on a single curve for spBV 0

2=2H greater than a number slightly
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Fig. 5. Profiles of mean streamwise particle velocity for dþp ¼ 0:368 and Res = 590.
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larger than one. At spBV 0
2=2H greater than about 10 the deposition coefficient is constant. Thus, we can define

the regime of spBV 0
2=2H greater than 1.2 as the unidirectional trajectory regime. This is not surprising since the

definition of sp is such that V 0
2sp is the stopping distance for a particle launched into a still fluid with velocity

V 0
2.
The sharp decrease of kDB with decreasing spBV 0

2=2H in the trajectory region reflects both the deceleration
of the particles before they hit the wall and the increasing influence of fluid turbulence.

Calculated mean velocities in the flow direction are compared with the velocity profile of the fluid, Uþ1 ðxþ2 Þ,
in Fig. 5. The particles are introduced with a streamwise velocity of V þ1 ¼ 15, the fluid velocity at the edge of
the viscous wall layer. It is noted that for large inertial time constants the particle velocity is constant and
approximately equal to the x1-component of the injection velocity. (The particle concentration is also con-
stant.) Over most of the cross-section the particles have a velocity which is less than the fluid. The significance
of this is that the particles, on average, will exert a retarding force on the fluid. Recent work by Mito and
Hanratty (2006) indicated that at volume fractions of about 10�4 the particles could significantly decrease
the fluid turbulence. This would mean that the influence of fluid turbulence could be even less than indicated
in the calculations presented in this paper.

4. Concluding remarks

The trajectory regime in a vertical conduit exists for spBV 0
2=2H greater than 1.2. For spBV 0

2=2H greater than
ca. 10 the deposition coefficient, kDB, is constant and the average velocity of depositing particles equals the
velocity of the injected particles (as shown in Fig. 2). The rate of deposition per unit area, RD, equals the prod-
uct of the concentration of depositing particles and their velocity.

Only half of the particles at the wall are depositing. The other half are being injected into the field. There-
fore, the concentration of depositing particles equals CB/2. Since RD ¼ CBV 0

2=2 the deposition coefficient
equals V 0

2=2 (as shown in Fig. 1).
A transition region exists for 1:2 < spBV 0

2=2H < ca: 10. In this region the mean velocity with which the par-
ticles deposit is less than V 0

2 because the particles are influenced by fluid turbulence and particles moving in a
uniform trajectory are slowed down because of fluid resistance.

It is of interest to note that the saltation regime, observed in a horizontal conduit, is similar to the trajectory
regime where the particles injected from the bottom wall are not affected by fluid turbulence. The saltation
regime is defined for g+ (=gm/v*) P ca. 0.04 for Res = 590 by Mito and Hanratty (2004a), where g is the mag-
nitude of the acceleration of gravity. Thus the criterion for the saltation regime is affected by gravity, g, and
fluid turbulence, Res. The peaks of the trajectories, which can be calculated from Eqs. (1) and (2), move closer
to the bottom wall as g+ increases. Assuming that sp is constant (=Stokesian) along a trajectory, the equations
for the displacement and velocity of a particle in the saltation regime were derived by Mito and Hanratty
(2004a) as
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V 2 ¼ ðV 0
2 þ gspÞ exp � t

sp

� �
� gsp; ð10Þ

x2 ¼ sp ðV 0
2 þ gspÞ 1� exp � t

sp

� �� �
� gt

� �
: ð11Þ
The height of the trajectory is calculated from Eqs. (10) and (11) as
xþ2top ¼ sþp V 0þ
2 � gþsþp ln 1þ V 0þ

2

gþsþp

 !" #
; ð12Þ
where gsp equals the terminal velocity and all variables are made dimensionless using v* and m. Thus the height
is a function of the wall-normal component of the injection velocity, the terminal velocity and the inertial time
constant.

A plot of Eq. (12) for the case where V 0þ
2 ¼ 1 is given in Fig. 6. The saltation region is indicated by the

dashed curve. For g+! 0 the results are the same as obtained for a vertical flow. For cases in which xþ2top

is greater than 2Res, particles move in a unidirectional trajectory from the bottom wall to the top wall. It
is noted that gravity has an important effect on the trajectory, in that xþ2top decreases strongly with g+. Thus,
it is noted that it is difficult for non-turbulent trajectories to carry drops from the bottom wall to the top wall.
The most likely scenario is that they are carried to a certain distance from the bottom wall where they either
mix with the turbulence or drop back to the place of origin.
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